﻿ Elm110 112 116 micro differential himlabafi.ru

Michael Greenberg D. Solutions Manual to accompany Ordinary Differential Equations Features a balance between theory, proofs, and examples and provides applications across diverse fields of study Ordinary Differential Equations presents a thorough discussion of first-order differential equations and progresses to equations of higher order.

2567.11 RUR

Костюм камуфлированный «Капрал», размер 112-116, рост 170-176 Защитные элементы: ветрозащитная планкаРегулировки по ширине: кулиска по линии талии, паты на пуговицах по низу рукавов

2345 RUR

Steven Holzner Differential Equations For Dummies The fun and easy way to understand and solve complex equations Many of the fundamental laws of physics, chemistry, biology, and economics can be formulated as differential equations. This plain-English guide explores the many applications of this mathematical tool and shows how differential equations can help us understand the world around us. Differential Equations For Dummies is the perfect companion for a college differential equations course and is an ideal supplemental resource for other calculus classes as well as science and engineering courses. It offers step-by-step techniques, practical tips, numerous exercises, and clear, concise examples to help readers improve their differential equation-solving skills and boost their test scores.

1555.17 RUR

Constantin Corduneanu Functional Differential Equations. Advances and Applications 9373.54 RUR

Lennart Edsberg Introduction to Computation and Modeling for Differential Equations Uses mathematical, numerical, and programming tools to solve differential equations for physical phenomena and engineering problems Introduction to Computation and Modeling for Differential Equations, Second Edition features the essential principles and applications of problem solving across disciplines such as engineering, physics, and chemistry. The Second Edition integrates the science of solving differential equations with mathematical, numerical, and programming tools, specifically with methods involving ordinary differential equations; numerical methods for initial value problems (IVPs); numerical methods for boundary value problems (BVPs); partial differential equations (PDEs); numerical methods for parabolic, elliptic, and hyperbolic PDEs; mathematical modeling with differential equations; numerical solutions; and finite difference and finite element methods. The author features a unique “Five-M” approach: Modeling, Mathematics, Methods, MATLAB®, and Multiphysics, which facilitates a thorough understanding of how models are created and preprocessed mathematically with scaling, classification, and approximation and also demonstrates how a problem is solved numerically using the appropriate mathematical methods. With numerous real-world examples to aid in the visualization of the solutions, Introduction to Computation and Modeling for Differential Equations, Second Edition includes: New sections on topics including variational formulation, the finite element method, examples of discretization, ansatz methods such as Galerkin’s method for BVPs, parabolic and elliptic PDEs, and finite volume methods Numerous practical examples with applications in mechanics, fluid dynamics, solid mechanics, chemical engineering, heat conduction, electromagnetic field theory, and control theory, some of which are solved with computer programs MATLAB and COMSOL Multiphysics® Additional exercises that introduce new methods, projects, and problems to further illustrate possible applications A related website with select solutions to the exercises, as well as the MATLAB data sets for ordinary differential equations (ODEs) and PDEs Introduction to Computation and Modeling for Differential Equations, Second Edition is a useful textbook for upper-undergraduate and graduate-level courses in scientific computing, differential equations, ordinary differential equations, partial differential equations, and numerical methods. The book is also an excellent self-study guide for mathematics, science, computer science, physics, and engineering students, as well as an excellent reference for practitioners and consultants who use differential equations and numerical methods in everyday situations.

7495.27 RUR

A. Kim V. Systems with Delays. Analysis, Control, and Computations The main aim of the book is to present new constructive methods of delay differential equation (DDE) theory and to give readers practical tools for analysis, control design and simulating of linear systems with delays. Referred to as “systems with delays” in this volume, this class of differential equations is also called delay differential equations (DDE), time-delay systems, hereditary systems, and functional differential equations. Delay differential equations are widely used for describing and modeling various processes and systems in different applied problems At present there are effective control and numerical methods and corresponding software for analysis and simulating different classes of ordinary differential equations (ODE) and partial differential equations (PDE). There are many applications for these types of equations, because of this progress, but there are not as many methodologies in systems with delays that are easily applicable for the engineer or applied mathematician. there are no methods of finding solutions in explicit forms, and there is an absence of generally available general-purpose software packages for simulating such systems. Systems with Delays fills this void and provides easily applicable methods for engineers, mathematicians, and scientists to work with delay differential equations in their operations and research.

14623.43 RUR

Aliakbar Haghighi Montazer Difference and Differential Equations with Applications in Queueing Theory A Useful Guide to the Interrelated Areas of Differential Equations, Difference Equations, and Queueing Models Difference and Differential Equations with Applications in Queueing Theory presents the unique connections between the methods and applications of differential equations, difference equations, and Markovian queues. Featuring a comprehensive collection of topics that are used in stochastic processes, particularly in queueing theory, the book thoroughly discusses the relationship to systems of linear differential difference equations. The book demonstrates the applicability that queueing theory has in a variety of fields including telecommunications, traffic engineering, computing, and the design of factories, shops, offices, and hospitals. Along with the needed prerequisite fundamentals in probability, statistics, and Laplace transform, Difference and Differential Equations with Applications in Queueing Theory provides: A discussion on splitting, delayed-service, and delayed feedback for single-server, multiple-server, parallel, and series queue models Applications in queue models whose solutions require differential difference equations and generating function methods Exercises at the end of each chapter along with select answers The book is an excellent resource for researchers and practitioners in applied mathematics, operations research, engineering, and industrial engineering, as well as a useful text for upper-undergraduate and graduate-level courses in applied mathematics, differential and difference equations, queueing theory, probability, and stochastic processes.

9224.13 RUR

Gerhard Ziegler Numerical Differential Protection. Principles and Applications Differential protection is a fast and selective method of protection against short-circuits. It is applied in many variants for electrical machines, trans-formers, busbars, and electric lines. Initially this book covers the theory and fundamentals of analog and numerical differential protection. Current transformers are treated in detail including transient behaviour, impact on protection performance, and practical dimensioning. An extended chapter is dedicated to signal transmission for line protection, in particular, modern digital communication and GPS timing. The emphasis is then placed on the different variants of differential protection and their practical application illustrated by concrete examples. This is completed by recommendations for commissioning, testing and maintenance. Finally the design and management of modern differential protection is explained by means of the latest Siemens SIPROTEC relay series. As a textbook and standard work in one, this book covers all topics, which have to be paid attention to for planning, designing, configuring and applying differential protection systems. The book is aimed at students and engineers who wish to familiarise themselves with the subject of differential protection, as well as the experienced user entering the area of numerical differential protection. Furthermore, it serves as a reference guide for solving application problems. For the new edition all contents have been revised, extended and updated to the latest state-of-the-art of protective relaying.

2174.26 RUR

Peter O'Neil V. Solutions Manual to Accompany Beginning Partial Differential Equations Solutions Manual to Accompany Beginning Partial Differential Equations, 3rd Edition Featuring a challenging, yet accessible, introduction to partial differential equations, Beginning Partial Differential Equations provides a solid introduction to partial differential equations, particularly methods of solution based on characteristics, separation of variables, as well as Fourier series, integrals, and transforms. Thoroughly updated with novel applications, such as Poe's pendulum and Kepler's problem in astronomy, this third edition is updated to include the latest version of Maples, which is integrated throughout the text. New topical coverage includes novel applications, such as Poe's pendulum and Kepler's problem in astronomy.

2325.06 RUR